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ON THE OFTI~AL CONTROL OF INTEG~L-FUNCTIONAL EQUATIONS* 

L.E. SHAIKHET 

The problem of the optimal control of stochastic integral-functional 
equations of neutral type with an intergral quality functional is considered. 
For the case of a linear quadratic problem an explicit form of the optimal 
control is presented. 

A class of equations which originated in the synthesis of Volterra 
equations, and stochastic differential equations with after-effects of 
neutral type are discussed. The problem of the optimal control of such 
systems is an essential development of the theory of controlled differential 
equations /l-E/. Examples of real objects whose mathematical models 
contain equations with an after-effect are discussed in /9/. A study of 
integral equations of neutral type is essential in controlling the motion 
of bodies in a continuous medium, /lo/. Volterra equations first arose 
in the theory of creepandform the basis of this theory /ll, 12/. 

1. Let {E,(t), J(u). U} be a certain problem of optimal control, with the trajectory of 
motion L (f), the quality functional J(U), and a set of feasible controls li. Also, let ug and 
UC be two elements from U, close ta each other than E>O, and identical when E = 0, for 
which the limit 

exists. 
If u0 is the optimal control of the problem {L (f), J (u). c’). that is J (IL,,) = inf,,cJ (u). the 

quantity J'(uO) is non-negative. Thus, the inequality J'(u,)>O is a necessary condition for 
the optimality of the control ug. In some cases it can be used to synthesize the optimal 
control. 

The aim of the present pape- r is tc calculate limit (1.1) for a problem of control with 
the trajectory of motion given by the stochastic integral-functional Eq.Ci.2) and the quality 
functional (1.3) 

A (f. s. y. u. fi) = (I (t. s. (i. u)h + b (f, 8. g) (ir (t + h) - 

u' (1)) - { c (2: f. s, q) \< (If. f 7- h]. dz) 

J (~1 = .tJ [F (07.E) + i G (s, %,& u (s)) ds] 

We will introduce the following notation and definitions: 
space; {it} is the streit-: of the o-algebras .j, Z 13. t E 10. 71; -41, 
norm of the function 9 (r)defined by the relations 

11 (i II" = [SUl?fSO .If j ‘F ft) j Y” 
(!I q ii1 = IsuPlelo.rlJl I c( V) 1’1’ y) 

H, (If,) is the space of fa (i,)-measurable functions q (t). m (t) _ 

(1.3) 

{Q.o.P} is the given probabilit: 

= .M {. !*I; II B 110 (Ii v II,) is the 

R”, t FE (- m. Ol(i0, f) which are 
continuous from the right and bounded from the left, and are such that II (r 110 < m (II cp II 1 -=z m ): 
U is the setof feasible controls, that is of &-measurable functions u (f). u (t) 5 R', t f f0, Tl 
for which there exists a solution of (1.21, and the functional (1.3) is finite: u,,is the set 
of j,-measureable functions u (t). u (f) 5 R', t f 10. ?'I such that Ilu/\,< oe; D(z) is the set of 
f,-measurable functions g(2) such that for certain a > 0 and C> 0, the relation .I/ 1 ‘( U) - 
q (s)12<cr/ t- sp holds for any t and s from the definition domain of q(t); and S denotes a 
set of non-decreasing functions K(T). T = (- 00.01 which are continuous from the right, have a 
limit on the left, and are such that 
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We shall say that the function K(t) from S has an isolated step at zero if there exists 
S> 0 such that in the segment 1-&O] it has a unique step at zero: dK (0)= K(O)- K(- 0); 
S, is the subset of the functions from S which have an isolated step at zero, less than unity, 
that is dK(O)<l; S, 

_ 
is a subset of the functions from S which are continuous in a certain 

sufficiently small vicinity of zero [--S, 01 (note that for T< 0 and K,(O)= K(-0) it follows 
from K (T) E S, and K,(T) = K(r) that K,(r)f S,); F', is the set of functions R (f, 21% t E [O, 
Tl, negative and non-decreasing in s~[O,t) such that 

t 

s"~o<;~<~fdR(t,r)<m 
0 

and S, denotes the subset of the functions K(r) from S for 
resolvent in V. 

which the kernel ~K(T-_i) has a 

If X and Y are two normal spaces, and B(s) is a certain mapping of X and Y, then V R(z) 
is the Gateaux derivative of this mapping. For fixed Z*E X V B(q) is a linear operator 
mapping X into Y (see /13/, p.471). For arbitrary x,and x1 from X the relation 

* (fd - B (20) = 5 ri3 (50 + 1 (XI - x0)) (q - Xl) &r (1.4) 
0 

holds. If I' = RI. then <rE(z&.z) is the value of the linear functional VB(z,) on the 
element x=S (see /14/, p.62). 

The letters c and a (with indices or without) denote various positive constants, aj\ 6 = 
minla, bl. The scalar functions .F(q).G(&cp, u), the n-dimensional functions @(1, (F), a (1. s. F, 
u). c (z: t.s, sj), and the n X m matrix function b(f.s, cp) are defined for 
u c R'. q E Ho. 

o<sgtq T, ZER”. 
The centralized Poisson measure v'(t, A) with parameter tn(A) and the m- 

dimensional Wiener process u(i) are mutually independent and f,-measurable; n (t) is an fr- 
measurable random process, and er is the family of shift operators: e,$ (s) = E (1 -+- s). s Q 0, 2 > 
0. 

For t< 0, the process z(r) is assumed to be known, and at the same time e,t = ~Eff~. 
For t> 0 it is determined byEq.Cl.2). It is proposed that the "splicing condition", 
characteristic for equations of neutral type (/9/, p.28!. 

‘lo (01 = q (0) f U) (0. qo) (1.5) 
is satisfied. Let 

c, (L s. 4 ds) = ‘4 (1. s. e,:,. u. ds) - A (f. s, e,:,. u* (s). ds) 
l,l* 

PC (1) = $ (c, (t, s, uo (.h), dr). t 5 [to, T] 
i. 

where 2, is the solution of Eq.Cl.2 ) with the control ii0 and FL with the control uc. 
Assuming that pt(t} = 0 when 1 E iU. t&. and l),(i) = U when t s (0, t, - ~1, we obtain 

'7s (t) = t1t: (f) -- PC (!) - pc (t). t ? [U. T1 
Let 

i.,r (1) = EC, (I) - T (E, (1) - i. (I))? 7 5 [O. 11 

m(t)=fCID(l.Bi);l)dr, E>O 

1 

0.6) 

Then 
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that is I satisfies the equation 

QE (4 = tit (4 + Q (4 f%sIc + i A, (t 1 s, w e&G 
t. 

Also, consider the equations 

Assuming that 

EP (f) = y’, (f) e!qd A- i B, (f. s, ds) e&l 

YE (1) = Q (f) - 00 (f), B, (1, s, h) = A, (t. s, h) - 

A, (f. s, 17) 

we obtain 

le(f) = qc (1) - qo if). I‘r (1) = 'lr (1) - 'lo (1) 

Notice that the equation 

+ (J k) - J (UO)) = ni [+- (wki) - ww) + 

1. 
1 
7 s 

(G (S,%fe, V) - G (S, %EOI uo(S))) ds f 
I.--E 

+< (G (s, %Ee. u. (s)) - G (s, e,b, u. (s)))~s] 
f, 

follows from (1.21, (1.3: and (1.6!. 

(1.7) 

t1.v 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

Let us introduce the following conditiozs: 
1". T E HO: 2'. 11 GH,: 3". 11" f (‘0; 4'. g- E D (a,): 5'. 11 E D (a,); 6". u. E D (as); 7". The random 

quantity LJ is f+,-meaSUr&?;e, ari .?fIL.j?( 0~. The fcilowin: notation iS use6 in con&cionS 

8"__14" : 
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loo. The functions cD,o, b and c have a Gateaux derivative with respect to q,and at the 

same time for any qI,qt from Ho, 

I vo (t9 CPJ ‘Fs I < OlO’? I vc (2; tt & CPJ 9s I * < a* 
I Va 0, 0, vl, ~1 cp2 I ’ + I vb (L 6, WI ‘PI I * < 0~1’ . 

llO. The functions @,a, b and c have a Gateaux derivative with respect to cp, and at the 
same time for any q,,qn and C,C from HO, 

12O. The 

13'. The 

14O. The 
time for qF1,q2 

I w (f, CPA - V@ (L CPA cp I * + 
1 (Va (t. s, VI, u) - Va (t, s, ‘PI, u)) 9 I * + 
I Pb 0, s, 01) - Vb (tt s. CPA) cp I * Q &I 

I PC (2; 2, s, Vl) - vc (2; L 8, CPA) cp I * < R** 

functions F and G are such that 

I F (CFJ I < a + CL’ 
I G (t9 ‘pl? 4 l Q (1 i I u I ‘1 a + 0s 

function G is such that 

I G (tl, ql. ul) - G (f2. (c2. up) 1 < (&‘)’ 1 [I uI - u2 1 -r YI~~T 1 t, - t, I%~1 

functions F and G have a Gateaux derivative with respect to q,and at the same 
and cp from H,, 

I <OF (rpl)? (F2) I < 91 - 2, 

It is assumed in Conditions Go-l40 that 

We shall assume that the functions Elo.li,. ILIz are the same for all conditions. 

Theorem 1. Let Conditions 1o-l4o be satisfied. Then for any t, c [O, T] the limit (l.l), 
(1.6) for the control problem (1.2), (1.3) exists, and is 

where qo(t) is the solution of Eq.tl.8). 

2. The following assertions are necessary tc prove Theorem 1. 

Lemma 1. Let z(r) be a non-negative function which satisfies the inequality 

a(t) < F (TV - f a (1 -: F) dli (b), t E IO, T], K 5 so 7 s2 
-* 

where P(t) is a non-negative, non-decreasing and continuously differentiable function. Then 

a (4 < 4 0). 

Proof. We introduce a sequence of f,mctions y,,(1) such that 

y0 (1) = 2 (1!: :‘n (f) 9 B it) f ~~,,.,~WX,S). n=l,Z,... 

It can be shown that ~~(1) >,Y,,_~ (I) fcr all n = 1, 2. . and all i E [O, 71. Let o0 (0 be the 
solution of the equation 

GU!=eV)+ i cce(? + S)dK (I) 
:I 

This solution exists and is unique (see /9/, p.30). Thus lim ~~(0 = 5~ (I) as n - a~. with a(,~ < 
(10 (fi. We have 

so(r) 51 bit) +i ao(:; dK ,S - iI = B (f’ 7 [dR (f.si fi IS) 4 fi (f) 11 - j dR (f, s)j < cF (11 

0 i L i 
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Theorem 2. Let UEFc,, and let Conditions lo, 20, a0 and 9' besatisfied. Thenaunique 

solution of Eq.cl.2) exists in w,. 

Proof. Assume that 

%I~ = 'PO! n 2 0, Eo (2) = tl 0) (2.1) 

Yn @f = M I L @f I’% %I (:I = -PocruY?l (4 

The function z,(t) is uniformly bounded. In fact, it follows from Condition B" that 

i Ll+tt, I@ - a0 03) < c + IT Q) I + (2.2) 

~~IS.+~(tt~)ldKo(s)~ISA(~,~,~.Sn~u~s),~)I 

0 

From Conditions lo, 2O, and 8O, the properties of stochastic integrals (see /15/, p.1381 
and Lemma 1, we can obtain the estimate 

whence follows the uniform boundedness of z,(t). 
Now let zn(f) = sup,G,stJf f &, (s)- f,+ (s)! ?. Using Condition go, similarly tc (2.3) we obtain 

z,+, (t) Q .zl (T) (cT)“,n!, z1 (?') < 00, and lim z, (t) = 0 as n -+ 00 uniformly in t EIO, Tl. Consequently, 

& (4 converges in the mean square to a certain process E(t) which is a unique solution of 
Eq. 11.2), with I/ E&<w (see /15/, p.(238!. 

Notice that if Conditions 3oand?'aresatisfied, the controluE belongs to u,. 

Corollary 1. Let conditions 1",2",8", 9" and 12' be satisfied. Then an arbitrary control 
from r, is feasible, i.e. I‘,c c'. 

Coroliary 2. Let Conditions lo-3O, 8c and go be satisfied. Then there exists in H, a 
unique solution of Eq.tl.2) for the cor,trol uo. If additionally, Condition 7'is satisfied, 
then there exists in H a unqiuc solution of Eq.cl.2) for the control &, If in addition 
Condition loo is satisfie-7, then unique sciutions of Eqs.(l.7), (1.8, and (1.111 exist in HI, 

Theorem 3. Let the condition (1.5' a.nd Conditions lC--EC, 8O and go be satisfied. The!? 

Fo G! D icrf. a = min il. a,. al, ?a,. cL$. a,, as) 

Proof. The existence cf E, fci1ows fro- Corolisrj~ 2. The inequality 

.II / E. (Q - E. if:) j ? < c I 1, - t, p. Yt,, 1, E IO. Tl 

is FroveZ in two stages. First, let 1, = O.:, = t. z (t) = X / 5, (t) - ~0 (0) 1'. An estirr,ate cf 

I 5, (0 - (IO 6’) I analogolis tc (2.2) is obtained frcr: (1.2) and (1.5). Then usin Conditions 
1".3'-5', 8'.9', and Ep c: H,, and the relations 

.II \ $0 (i i T) - qo (7) j 2 < 2 [-: (f - 7) -L \ 7 p1 

we derive the inequality 

Hence (see Le;n?a 1) L (I) < cP. Nc;‘ asr:'z?.;ng Mat 

t,=i<t,=t +- A. z (t) = M j &, (t + A) - to(t) 1 2 

making use of the similar previcus estimate we finally have z(1),< CA,". The theoren is Proved. 

Lemma 2. Let tonditionslo-90 be satisfied. Then uniformly in t~[t,. Tl we have lim,o 

itf 1 ye (8) 12 = 0. 
Proof. Let us write y,(1) in the fern: 

i=l 
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As in /16/, the estimates 

MlEl(V ?<a’, MI 62 V) I* < ct.* (EU + a, Jw I4 (1) I’< 
m-2 (P” + P=- _c r=y, M I& (0 12 + J+f I 6, (I) I* < es 

follow from Condition 9' and Corollary 2. This proves the lemma. 

Lemma 3. Let Conditions I"-3". 7"-II" be satisfied. Then, uniformly in 1Eli,, Tl we 
have lim,, M 1 5, (1) 1 * = 0. 

Proof. By (l.lO), 

d,(t) = ii M / [to (t. s,Q,?.,‘, ILO(S Go(.,Q,t, .)]Q,go l*dr ds 
1, 0 
1 1 

W=s [WIW, 
1. 0' 

s, 88i.,T) - Tb (, , B,Se)]B,go 12 dr ds 

6, (I) = i s j M 1 [Tc (T; 1, I, ‘3,h;) - Tc (. , O,E)] 6,g, I'd?Il (dz) ds 
I 0 

Let X,,,(S) be an indicator of the set (o: go(b)>N). By expressing go(s) in the form go(s)= 
go (s) %h' (s! +ge(s)(l- am) and makin use of Conditions 10' and ll", we can show that 

61 (1) , < c 1: g"%y ii? + F2.V' i g $21 E, 
For any 6>0 an A' exists such that *qo~s’1?<6’(Zc). Let us fix A' and select e so.that 

t?.Y* ,, qC $2 < 6 0~. Then 6, (1) < 6. Similar estimate hold for 6,(l), i= 2,3,4 , as well. Thus, for 
any 6>0 we car. find c>O such that MI ;‘ (f)12<6. The lema is proved. 

Corollary 3. Lei Conditions lo--lI"be satisfied. Then )im,, .\I ( 1, (1) / 2 = 0 ur,ifornly 
in 1 Ez [f,. TI . 

Proof. For any 6>O we can find E>O such that M1&(njz TM ir,(tj I* (6 (see Lemma 2 and 
3;. Assunlng zc (1) = 'vPO<;,<!M I I, (5; i’v sirrilarly to (2.3) we obtain 

;'(!J"'[+'&j 

Hence, by the Gronwall - Bellmar. :ecrza, we obtain the necessary proof. 

Lemma 4. Let Conditicns l"-lCc,130 be satisfied, and let 

g, (S) = -11 lG (s. e,:,. v) - G (3, e,r,,, fig @))I 

pt+jCgi(‘)dr 

Then p = lim,,, u, = so(iO). 

Proof. Suppose that 
1. 

b,=$.kf j [G (5, d,5,, u) - G (t., 8,qSo, 1 )I d:- 
1,--r 
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Then wc= p +6,. Using Conditions 13', 3', 6', 7O, Corollary 2 and Theorem 3, we can show 
(see /16/I that 

i . e . lim,+,b, = O.The lemma is proved. 

LeJnma 5. Let Conditions lo-11' ,14' be satisfied, and let 

B c = + M IF (Or&) - F P,&dl, B = AI O’F WI), ‘ho) 

Then lim,-o& = p, and in addition 

lim c-o+ M 5 [G(s, 6.k, uo(s)) -G(s, 6,&o, mo(s))lds== M =<VG(,, %&or ma(s)), '3rqo)ds 
.t. 5 . 

Proof. Suppose that 

b, = M <VP (8&o), e,z,> + Afi c~'F(erla)- VP@&), eTgL) dT 
0 

Then &= p + 6,. Using Condition 14O and Corollaries 2 and 3, we can show that 
lim~~ob,=O (see /16/j. The proof of the second assertion is similar. The lemma is proved. 

Now the proof of Theorem 1 follows from (1.12) and Lemmas 4 and 5. 

3. We shall demonstrate the possibility of a synthesis of the optimal control with the 
help of the condition J'(u,)> 0, using as an example the following problem of controlling 
linear equations with a quadratic quality functional 

(3.1) 

(3.2) 

Here 'l(1) is the random process satisfying Conditions 2Oand5'; a(t.s) is a non-randor,, 
bounded n X I matrix, Hclderian with respect to both variables; -v(s) is a non-random, Holder, 
bounded and positive I 'I 1 matrix; H is a non-random, non-negative n Y' 11 matrix; and K (t? s) 
is a non-random n X n matrix such that 

sup,_,,r 1 dli (t. s) 1 < dh’,, (s). K, 5 S, ? S: 

) dh‘ (1,. si - dK (r,. s) 1 < 1 i, - t, I” dKo (s) 

Suppose that dR(i. T) is the resolvent of the kernel dK(?.?- t). We assume that 

for an arbitrary matrix f(1.s). Then 

q. (t) = $ (t. 1,. a (,. lo)) (L. - u. (1,)). t E Ifo. Tl 
Let us write J'(u,) in the for;r, 

J' (u,) = .?I lir - ug (f,))f A‘ (to) (c - u. (lo)) + 

2 (L' - UC! (to))* (.V (lo) uo (10) - 11'8 (TV to, 0 (., to)) HdI&F, (T))l 

For J'(u,,) to be non-negative it is necessary and sufficient that the optimal control 
of problem (3.1)) (3.2) should have the form 

u. (to) = -A'-' (io) $* (T, 10, II (., to)) HJJt,Eo CT) 
Computing ,!f,c;,, (T) from (3.1)) the control ~~(1,) can be converted to the form 

uo (to) = p (to) [ 50 (to) i s’ t CT, to, a:, ( , 4) uo (s) ds] 
0 

p (to) = - A.-’ (to) $* (T, to, a (. , to)) H IE T 

~V(T.l.U (. , s))W(s)$* (T, s, a (.,s)) dsH]-l 

;o(icl)= J‘ (T; to> b (.q h)) i $(T, lo, E)F,(~o) -!- 
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S4~(T,ro,dK:,(.,s))b(s), b&s)---,(q(t)-q(s)) 
0 

‘%, 6 S) = a (h s) - a (41, s), dKt, (4 8) = dK (t, s - t) - dK (to, s a to) 

Let O(t,6) be a resolvent of the kernel ~(t)$((T,t,a;(*,s)). Then for any arbitrary 1E IO, Tl 
the optimal control takes the form 

uo 0) = P W 500) -!- i4 (4 4 P (4 60 (s)ds 

On subsitituting co(t) into the above we ibtain 

(3.3) 

Clearly, the control uO obtained, as a feedback, is feasible. Here the proof that the 
solution of (3.1) exists and is unique is analogous to that of Theorem 2. 

Using the methods developed in /17-B/we can demonstrate that the control (3.3) is e- 
optimal fortheproblem of controlling a quasilinear integral equation which differs little 
from Eq.(3.1). 

4. Example 1. The controlled motion of aircraft is described (see /lo/) by systems of 
linear integro-differential equatons of the form 

t t 
5’ (t) = .4o (t) 5 (1) + 5 A, (t - s) E’ (;) ds j 5 -41 (I -s) E (8) ds + a (1) u (8) + o (I) I’ (t) (4.1) 

0 0 

As mentioned in /lo/, the creation of effective methods for optimal control by such 
systems "still remains an unsolved problem". 

Let us show that Eq.(4.1) reduces to the form (3.1) and therefore the solution of the 
control problem (4.1), (3.2) can be obtained as a special case of problem (3.1), (3.2). 

In fact, on integrating (4.1), we obtain 

(1 (t) = tE - & (0) 5 (0) + 16 (~1 du t-‘), K (1, d = A, (I) + 
Cl 

1 

Al (t - s) + 4 (t - f), Bi(~)+(s)ds, 1=1.2 
0 

Let R(t,s) be the resolvent of the kernel K(t,r), and 

f 

& (') = E + 1 A (T, 5) ds, p(t) = - N-I (t (l) B0* (I) H .E + 
I L 

s’ 

1 
-1 

B. (s) a (E) N-1 (s) a* (6) Bo* (8) dsR 

I 

Ro (1, s) = K (T, s) + 5 R (T, 7) R (1, s) dr - Bo (1) K (1, s) 

. t 

Then the optimal control of problem (4.1), (3.2) is 

t T 
u,(1)=p(1)[Bo(1)6(1)+~Ro(f,S)L(~)d-.-S &(+-r~W%(0)1 

i t 

Example 2. Consider the following problem of theoptimalcontrol of the stochastic 
differential equation of neutral type 

5' (1) = b:’ (f - h) + au (t) y- u” (t). 1 E 10. z-1; a i 0. h E (0, T) 

UJ 1’1 d> 
3 



in which E(tj = 0 when r<O, and u(t) is a Wiener process. 
Here 

dK (t, ‘I) = Lh (h + 7) d?, dr: (t, T) = 5, b’6 (ih + T- f) dr 
i=, 

Suppose that (T- t)/iz is non-integer, n (f) = [(T - f)lhl + 1, m (1, b) = n (f) for b = i, and m (t, b) = 
(1 - b""')/(l - b) for ~#i. Then the optimal control has the form 

IQ (,) = - m (f, b) [m (I, b) (% (1) - b’, (1 - h)) + b”%o (T - n (f) h)] ;: 

for almost all tE [O,T] (with the exception of ti = T - rh, i = 1, . ., [T/h]). 
Note that the necessary condition of optimality for stochastic integral-functional 

equations was also given in /19/. Earlier it was obtained for stochastic differential equations 
(ordinary and partial) in /20-23/, and for stochastic Volterra equations in /24/. 
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